Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473887

RESUMO

Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Aterosclerose , Doença da Válvula Aórtica Bicúspide , Calcinose , Síndrome de Marfan , MicroRNAs , Humanos , Valva Aórtica/patologia , MicroRNAs/metabolismo , Aneurisma Aórtico/complicações , Aneurisma da Aorta Torácica/genética , Síndrome de Marfan/genética , Calcinose/patologia , Fenótipo , Aterosclerose/metabolismo , Fibrose
2.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894814

RESUMO

Marfan syndrome (MFS) is a connective tissue disorder caused by FBN1 gene mutations leading to TGF-ß signaling hyperactivation, vascular wall weakness, and thoracic aortic aneurysms (TAAs). The pathogenetic mechanisms are not completely understood and patients undergo early vascular surgery to prevent TAA ruptures. We previously reported miR-632 upregulation in MFS TAA tissues compared with non-genetic TAA tissues. DNAJB6 is a gene target of miR-632 in cancer and plays a critical role in blocking epithelial-to-mesenchymal transition by inhibiting the Wnt/ß catenin pathway. TGF-ß signaling also activates Wnt/ß catenin signaling and induces endothelial-to-mesenchymal transition (End-Mt) and fibrosis. We documented that miR-632 upregulation correlated with DNAJB6 expression in both the endothelium and the tunica media of MFS TAA (p < 0.01). Wnt/ß catenin signaling, End-Mt, and fibrosis markers were also upregulated in MFS TAA tissues (p < 0.05, p < 0.01 and p < 0.001). Moreover, miR-632 overexpression inhibited DNAJB6, inducing Wnt/ß catenin signaling, as well as End-Mt and fibrosis exacerbation (p < 0.05 and p < 0.01). TGF-ß1 treatment also determined miR-632 upregulation (p < 0.01 and p < 0.001), with the consequent activation of the aforementioned processes. Our study provides new insights about the pathogenetic mechanisms in MFS aortopathy. Moreover, the high disease specificity of miR-632 and DNAJB6 suggests new potential prognostic factors and/or therapeutic targets in the progression of MFS aortopathy.


Assuntos
Síndrome de Marfan , MicroRNAs , Humanos , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , beta Catenina , Fibrose , Fator de Crescimento Transformador beta/metabolismo , MicroRNAs/genética , Proteínas do Tecido Nervoso , Chaperonas Moleculares , Proteínas de Choque Térmico HSP40/genética
3.
Dermatopathology (Basel) ; 10(3): 231-243, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37606484

RESUMO

Leiomyomas are smooth muscle-derived benign neoplasms that can affect all organs, most frequently in the uterus. Fumarate hydratase gene (FH) mutation is characterised by an autosomal dominant disease with increased occurrence of renal tumours, but also by cutaneous (CLs) and uterine leiomyomas (ULs). So far, an increased occurrence of skin tumours in non-mutated patients with ULs has not been verified. To this aim, a case-group of women who were FH non-mutated patients surgically treated for ULs (n = 34) was compared with a control-group (n = 37) of consecutive age-matched healthy women. The occurrence of skin neoplasms, including CLs and dermatofibromas (DFs), was evaluated. Moreover, the microscopic features of FH non-mutated skin tumours were compared with those of an age-matched population group (n = 70) who presented, in their clinical history, only one type of skin tumour and no ULs. Immunohistochemical and in vitro studies analysed TGFß and vitamin D receptor expression. FH non-mutated patients with ULs displayed a higher occurrence of CLs and DFs (p < 0.03 and p < 0.001), but not of other types of skin tumours. Immunohistochemistry revealed a lower vitamin D receptor (VDR) expression in CLs and DFs from the ULs group compared with those from the population group (p < 0.01), but a similar distribution of TGFß-receptors and SMAD3. In vitro studies documented that TGFß-1 treatment and vitamin D3 have opposite effects on α-SMA, TGFßR2 and VDR expression on dermal fibroblast and leiomyoma cell cultures. This unreported increased occurrence of CLs and DFs in FH non-mutated patients with symptomatic ULs with vitamin D deficiency suggests a potential pathogenetic role of vitamin D bioavailability also for CLs and DFs.

4.
BMC Musculoskelet Disord ; 24(1): 576, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454045

RESUMO

BACKGROUND: Osteoporosis is a worldwide health issue. Loss of bone mass is a potential risk factor for fragility fractures, and osteoporotic fractures place a considerable burden on society. Bone and muscle represent a functional unit in which the two tissues are intimately interconnected. Ropivacaine is a potent local anesthetic used in clinical practice for intraoperative anesthesia and postoperative pain management, in particular for hip surgery. When injected, Ropivacaine can diffuse locally through, in particular in surrounding skeletal muscle tissue, causing dose-dependent cytotoxicity, oxidative stress and myogenesis impairment. Based on those evidences, we focused our attention on Ropivacaine-induced cytotoxicity on cultured human myoblasts. METHODS: Primary human myoblasts and myotubes from healthy subjects, osteoarthritic and osteoporotic patients (OP) were cultured in the presence of Ropivacaine. In some experiments, ascorbic acid (AsA) was added as a potent antioxidant agent. Cell viability and ROS levels were evaluated to investigate the myotoxic activity and Real-Time PCR and Western blot analysis carried out to investigate the expression of proliferation and myogenic markers. RESULTS: A dose-dependent decrease of cell viability was observed after Ropivacaine exposure in both OP myoblasts and myotubes cultures, whereas those effects were not observed in the presence of Propofol, a general anesthetic. The adding of AsA reduced Ropivacaine negative effects in OP myoblast cultures. In addition, Ropivacaine exposure also increased ROS levels and upregulated Nox4 expression, an enzyme primarily implicated in skeletal muscle ROS generation. AsA treatment counteracted the oxidant activity of Ropivacaine and partially restored the basal condition in cultures. Positive myogenic markers, such as MyoD and Myf5, were downregulated by Ropivacaine exposure, whereas myostatin, a negative regulator of muscle growth and differentiation, was upregulated. The phenotypic deregulation of myogenic controllers in the presence of Ropivacaine was counteracted by AsA treatment. CONCLUSIONS: Our findings highlight the oxidative stress-mediated myotoxic effect of Ropivacaine on human skeletal muscle tissue cell cultures, and suggest treatment with AsA as valid strategy to mitigate its negative effects and allowing an ameliorated functional skeletal muscle recovery in patients undergoing hip replacement surgery for osteoporotic bone fracture.


Assuntos
Ácido Ascórbico , Miotoxicidade , Humanos , Ropivacaina , Miotoxicidade/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia , Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia
5.
Ann Diagn Pathol ; 66: 152163, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37301104

RESUMO

After the discovery of the hazardous effects of xylene, less toxic substitutes were proposed for routine histology in the last years. However, the introduction of new xylene-free substitutes in histological processes requires a careful evaluation of their performance in terms of morphological and microscopic details to permit a solid diagnosis as well as good quality immunohistochemical and biomolecular analyses. In this study, we analyzed the performance of a new commercially available xylene-free Tissue-Tek® Tissue-Clear® agent in comparison with another routine xylene-free solvent yet available and employed in routine histological process. Serial histological tissue samples (n = 300) were selected and processed with the two clearing agents. Comparison and evaluation were also performed on slides obtained 6 months after paraffin embedding and archive storage. Blinded semiquantitative analysis of technical performance and morphological details, including tissue architecture and nuclear and cytoplasmic details, was performed on Haematoxylin-Eosin stained sections by two technicians and two pathologists, respectively. Evaluation of tissue slides documented a good overall histological performance in slides obtained after processing with the two different clearing agents. Slides obtained with Tissue-Tek® Tissue-Clear® displayed a higher score in some quality parameters, further supporting its use as a valid alternative to the other commercial routine xylene-free solvents.


Assuntos
Xilenos , Humanos , Xilenos/química , Indicadores e Reagentes , Amarelo de Eosina-(YS)
6.
Aesthetic Plast Surg ; 47(5): 2051-2062, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37130992

RESUMO

BACKGROUND: Currently, several techniques for autologous fat graft (A-FG) preparation aimed at obtaining purified tissue exist. Both mechanical digestions via centrifugation, filtration, and enzymatic digestion were considered the most effective with different impacts in terms of adult adipose-derived stromal vascular fraction cells (AD-SVFs) amount that volume maintenance. OBJECTIVES: This article aimed to report the in vivo and in vitro results, represented by fat volume maintenance and AD-SVFs amount, obtained by four different procedures of AD-SVFs isolation and A-FG purification based on centrifugation, filtration, centrifugation with filtration, and enzymatic digestion. METHODS: A prospective, case-control study was conducted. In total, 80 patients affected by face and breast soft tissue defects were treated with A-FG and divided into four groups: n=20 were treated with A-FG enhanced with AD-SVFs obtained by enzymatic digestion (study group 1 [SG-1]); n=20 were treated with A-FG enhanced with AD-SVFs obtained by centrifugation with filtration (SG-2); n=20 were treated with A-FG enhanced with AD-SVFs obtained by only filtration (SG-3); n=20 were treated with A-FG obtained by only centrifugation according to the Coleman technique (control group [CG]). Twelve months after the last A-FG session, the volume maintenance percentage was analyzed by magnetic resonance imaging (MRI). Isolated AD-SVF populations were counted using a hemocytometer, and cell yield was reported as cell number/mL of fat. RESULTS: Starting with the same amount of fat analyzed (20 mL), 50,000 ± 6956 AD-SVFs/mL were obtained in SG-1; 30,250 ± 5100 AD-SVFs/mL in SG-2; 33.333 ± 5650 AD-SVFs/mL in SG-3, while 500 AD-SVFs/mL were obtained in CG. In patients treated with A-FG enhanced with AD-SVFs obtained by automatic enzymatic digestion, a 63% ± 6.2% maintenance of fat volume restoring after 1 year was observed compared with 52% ± 4.6% using centrifugation with filtration, 39% ± 4.4% using only centrifugation (Coleman), and 60% ± 5.0% using only filtration. CONCLUSIONS: In vitro AD-SVFs cell analysis indicated that filtration was the most efficient system-between mechanical digestion procedures-thanks to the highest amount of cells obtained with fewer cell structure damage, producing in vivo, the most volume maintenance after 1 year. Enzymatic digestion produced the best number of AD-SVFs and the best fat volume maintenance. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .


Assuntos
Tecido Adiposo , Mama , Adulto , Humanos , Tecido Adiposo/transplante , Estudos de Casos e Controles , Estudos Prospectivos , Digestão
7.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142762

RESUMO

The pathobiology of ascending aorta aneurysms (AAA) onset and progression is not well understood and only partially characterized. AAA are also complicated in case of bicuspid aorta valve (BAV) anatomy. There is emerging evidence about the crucial role of endothelium-related pathways, which show in AAA an altered expression and function. Here, we examined the involvement of ERG-related pathways in the differential progression of disease in aortic tissues from patients having a BAV or tricuspid aorta valve (TAV) with or without AAA. Our findings identified ERG as a novel endothelial-specific regulator of TGF-ß-SMAD, Notch, and NO pathways, by modulating a differential fibrotic or calcified AAA progression in BAV and TAV aortas. We provided evidence that calcification is correlated to different ERG expression (as gene and protein), which appears to be under control of Notch signaling. The latter, when increased, associated with an early calcification in aortas with BAV valve and aneurysmatic, was demonstrated to favor the progression versus severe complications, i.e., dissection or rupture. In TAV aneurysmatic aortas, ERG appeared to modulate fibrosis. Therefore, we proposed that ERG may represent a sensitive tissue biomarker to monitor AAA progression and a target to develop therapeutic strategies and influence surgical procedures.


Assuntos
Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Aorta/metabolismo , Valva Aórtica/metabolismo , Biomarcadores/metabolismo , Endotélio/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
Cells ; 11(7)2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35406799

RESUMO

The global health emergency for SARS-CoV-2 (COVID-19) created an urgent need to develop new treatments and therapeutic drugs. In this study, we tested, for the first time on human cells, a new tetravalent neutralizing antibody (15033-7) targeting Spike protein and a synthetic peptide homologous to dipeptidyl peptidase-4 (DPP4) receptor on host cells. Both could represent powerful immunotherapeutic candidates for COVID-19 treatment. The infection begins in the proximal airways, namely the alveolar type 2 (AT2) cells of the distal lung, which express both ACE2 and DPP4 receptors. Thus, to evaluate the efficacy of both approaches, we developed three-dimensional (3D) complex lung organoid structures (hLORGs) derived from human-induced pluripotent stem cells (iPSCs) and resembling the in vivo organ. Afterward, hLORGs were infected by different SARS-CoV-2 S pseudovirus variants and treated by the Ab15033-7 or DPP4 peptide. Using both approaches, we observed a significant reduction of viral entry and a modulation of the expression of genes implicated in innate immunity and inflammatory response. These data demonstrate the efficacy of such approaches in strongly reducing the infection efficiency in vitro and, importantly, provide proof-of-principle evidence that hiPSC-derived hLORGs represent an ideal in vitro system for testing both therapeutic and preventive modalities against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Células-Tronco Pluripotentes Induzidas , Dipeptidil Peptidase 4/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/metabolismo , Organoides/metabolismo , SARS-CoV-2
9.
Front Endocrinol (Lausanne) ; 13: 842575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370943

RESUMO

In pancreatic beta cells, mitochondrial metabolism controls glucose-stimulated insulin secretion (GSIS) by ATP production, redox signaling, and calcium (Ca2+) handling. Previously, we demonstrated that knockout mice for peroxiredoxin 6 (Prdx6-/- ), an antioxidant enzyme with both peroxidase and phospholipase A2 activity, develop a mild form of diabetes mellitus with a reduction in GSIS and in peripheral insulin sensitivity. However, whether the defect of GSIS present in these mice is directly modulated by Prdx6 is unknown. Therefore, the main goal of the present study was to evaluate if depletion of Prdx6 affects directly GSIS and pancreatic beta ß-cell function. Murine pancreatic ß-cell line (ßTC6) knockdown for Prdx6 (Prdx6KD) was employed, and insulin secretion, ATP, and intracellular Ca2+ content were assessed in response to glucose stimulation. Mitochondrial morphology and function were also evaluated through electron microscopy, and by testing mitochondrial membrane potential, oxygen consumption, and mitochondrial mass. Prdx6KD cells showed a significant reduction in GSIS as confirmed by decrease in both ATP release and Ca2+ influx. GSIS alteration was also demonstrated by a marked impairment of mitochondrial morphology and function. These latest are mainly linked to mitofusin downregulation, which are, in turn, strictly related to mitochondrial homeostasis (by regulating autophagy) and cell fate (by modulating apoptosis). Following a pro-inflammatory stimulus (typical of diabetic subjects), and in agreement with the deregulation of mitofusin steady-state levels, we also observed an enhancement in apoptotic death in Prdx6KD compared to control cells. We analyzed molecular mechanisms leading to apoptosis, and we further demonstrated that Prdx6 suppression activates both intrinsic and extrinsic apoptotic pathways, ultimately leading to caspase 3 and PARP-1 activation. In conclusion, Prdx6 is the first antioxidant enzyme, in pancreatic ß-cells, that by controlling mitochondrial homeostasis plays a pivotal role in GSIS modulation.


Assuntos
Células Secretoras de Insulina , Peroxirredoxina VI , Animais , Apoptose , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Dinâmica Mitocondrial , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo
10.
J Cell Physiol ; 237(1): 589-602, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34287857

RESUMO

Tissue engineering aims to develop innovative approaches to repair tissue defects. The use of adipose-derived stem cells (ASCs) in tissue regeneration was extensively investigated for osteochondrogenesis. Among the ASC population, ASCs expressing the CD146 were demonstrated to be multipotent and considered as perivascular stem cells, although the functional role of CD146 expression in these cells remains unclear. Herein, we investigated the influence of CD146 expression on osteochondrogenic differentiation of ASCs. Our results showed that, in two-dimensional culture systems, sorted CD146+ ASCs proliferated less and displayed higher adipogenic and chondrogenic potential than CD146- ASCs. The latter demonstrated a higher osteogenic capacity. Besides this, CD146+ ASCs in three-dimensional Matrigel/endothelial growth medium (EGM) cultures showed the highest angiogenic capability. When cultured in three-dimensional collagen scaffolds, CD146+ ASCs showed a spontaneous chondrogenic differentiation, further enhanced by the EGM medium's addition. Finally, CD146- ASCs seeded on hexafluoroisopropanol silk scaffolds displayed a greater spontaneous osteogenetic capacity. Altogether, these findings demonstrated a functional and relevant influence of CD146 expression in ASC properties and osteochondrogenic commitment. Exploiting the combination of specific differentiation properties of ASC subpopulations and appropriate culture systems could represent a promising strategy to improve the efficacy of new regenerative therapies.


Assuntos
Tecido Adiposo , Células-Tronco , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Células-Tronco/metabolismo
11.
Cell Mol Bioeng ; 14(6): 613-626, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900014

RESUMO

BACKGROUND: Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including the inhibition of regenerative stem cell differentiation. In this work, we investigate the effects of microgravity simulation on early lineage commitment of hiPSCs from healthy and Marfan Syndrome (MFS; OMIM #154700) donors, using the embryoid bodies model of tissue differentiation and evaluating their ultra-structural conformation. MFS model involves an anomalous organization of the extracellular matrix for a deficit of fibrillin-1, an essential protein of connective tissue. METHODS: In vitro models require the use of embryoid bodies derived from hiPSCs. A DRPM was used to simulate microgravity conditions. RESULTS: Our data suggest an increase of the stemness of those EBs maintained in SMG condition. EBs are still capable of external migration, but are less likely to distinguish, providing a measure of the remaining progenitor or stem cell populations in the earlier stage. The microgravity response appears to vary between WT and Marfan EBs, presumably as a result of a cell structural component deficiency due to fibrillin-1 protein lack. In fact, MFS EBs show a reduced adaptive capacity to the environment of microgravity that prevented them from reacting and making rapid adjustments, while healthy EBs show stem retention, without any structural changes due to microgravity conditions. CONCLUSION: EBs formation specifically mimics stem cell differentiation into embryonic tissues, this process has also significant similarities with adult stem cell-based tissue regeneration. The use of SMG devices for the maintenance of stem cells on regenerative medicine applications is becoming increasingly more feasible. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00680-1.

12.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638913

RESUMO

Tumor burden is a complex microenvironment where different cell populations coexist and have intense cross-talk. Among them, a heterogeneous population of tumor cells with staminal features are grouped under the definition of cancer stem cells (CSCs). CSCs are also considered responsible for tumor progression, drug resistance, and disease relapse. Furthermore, CSCs secrete a wide variety of extracellular vesicles (EVs) with different cargos, including proteins, lipids, ssDNA, dsDNA, mRNA, siRNA, or miRNA. EVs are internalized by other cells, orienting the microenvironment toward a protumorigenic and prometastatic one. Given their importance in tumor growth and metastasis, EVs could be exploited as a new therapeutic target. The inhibition of biogenesis, release, or uptake of EVs could represent an efficacious strategy to impair the cross-talk between CSCs and other cells present in the tumor microenvironment. Moreover, natural or synthetic EVs could represent suitable carriers for drugs or bioactive molecules to target specific cell populations, including CSCs. This review will discuss the role of CSCs and EVs in tumor growth, progression, and metastasis and how they affect drug resistance and disease relapse. Furthermore, we will analyze the potential role of EVs as a target or vehicle of new therapies.


Assuntos
Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Vesículas Extracelulares/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , RNA Mensageiro/genética
13.
Cells ; 10(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34440886

RESUMO

Ovarian cancer is one of the deadliest malignancies among women. Approximately 75% of the patients with ovarian cancer are diagnosed with advanced disease that already has metastasis, particularly to the omentum. The omentum constitutes the ideal soil for ovarian cancer metastasis due to a complex intraperitoneal milieu that favors and supports the whole metastatic process. Adipose-derived stem/stromal cells (ADSCs) are part of this microenvironment and foster tumor progression via sustained paracrine secretion, including extracellular vesicles (EVs). Nonetheless, the preferential relationship between ADSCs, ADSC-derived EVs, and ovarian cancer cells could be exploited to use ADSCs and EVs as a vehicle for anti-cancer therapies. This review will analyze the strict relations between tumor progression, metastatic disease, and adipose tissue with its staminal components. In addition, we will describe the crosstalk and biologic relationship between ADSCs and tumor cells, the role of EVs in intercellular communication, the establishment of drug resistance, metastatic capacity, and ovarian cancer progression. We will analyze the new therapeutic opportunities in treating ovarian cancer offered by ADSCs and EVs as a vehicle for therapeutic molecules to target precisely tumor cells and limit the systemic adverse effects. Finally, we will discuss the limitations of these therapeutic approaches.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias Ovarianas/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/citologia
14.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203627

RESUMO

Recently, many studies investigated the role of a specific type of stem cell named the endothelial progenitor cell (EPC) in tissue regeneration and repair. EPCs represent a heterogeneous population of mononuclear cells resident in the adult bone marrow. EPCs can migrate and differentiate in injured sites or act in a paracrine way. Among the EPCs' secretome, extracellular vesicles (EVs) gained relevance due to their possible use for cell-free biological therapy. They are more biocompatible, less immunogenic, and present a lower oncological risk compared to cell-based options. EVs can efficiently pass the pulmonary filter and deliver to target tissues different molecules, such as micro-RNA, growth factors, cytokines, chemokines, and non-coding RNAs. Their effects are often analogous to their cellular counterparts, and EPC-derived EVs have been tested in vitro and on animal models to treat several medical conditions, including ischemic stroke, myocardial infarction, diabetes, and acute kidney injury. EPC-derived EVs have also been studied for bone, brain, and lung regeneration and as carriers for drug delivery. This review will discuss the pre-clinical evidence regarding EPC-derived EVs in the different disease models and regenerative settings. Moreover, we will discuss the translation of their use into clinical practice and the possible limitations of this process.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Especificidade de Órgãos , Regeneração/fisiologia , Animais , Humanos , Cicatrização
15.
J Clin Med ; 9(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255545

RESUMO

Infections are among the most frequent and challenging events in diabetic foot ulcers (DFUs). Pathogenic bacteria growing in biofilms within host tissue are highly tolerant to environmental and chemical agents, including antibiotics. The present study was aimed at assessing the use of silver sulfadiazine (SSD) for wound healing and infection control in 16 patients with DFUs harboring biofilm-growing Staphylococcus aureus and Pseudomonas aeruginosa. All patients received a treatment based on a dressing protocol including disinfection, cleansing, application of SSD, and application of nonadherent gauze, followed by sterile gauze and tibio-breech bandage, in preparation for toilet surgery after 30 days of treatment. Clinical parameters were analyzed by the T.I.M.E. classification system. In addition, the activity of SSD against biofilm-growing S. aureus and P. aeruginosa isolates was assessed in vitro. A total of 16 patients with S. aureus and P. aeruginosa infected DFUs were included in the study. Clinical data showed a statistically significant (p < 0.002) improvement of patients' DFUs after 30 days of treatment with SSD with significant amelioration of all the parameters analyzed. Notably, after 30 days of treatment, resolution of infection was observed in all DFUs. In vitro analysis showed that both S. aureus and P. aeruginosa isolates developed complex and highly structured biofilms. Antibiotic susceptibility profiles indicated that biofilm cultures were significantly (p ≤ 0.002) more tolerant to all tested antimicrobials than their planktonic counterparts. However, SSD was found to be effective against fully developed biofilms of both S. aureus and P. aeruginosa at concentrations below those normally used in clinical preparations (10 mg/mL). These results strongly suggest that the topical administration of SSD may represent an effective alternative to conventional antibiotics for the successful treatment of DFUs infected by biofilm-growing S. aureus and P. aeruginosa.

16.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961817

RESUMO

Marfan syndrome (MFS) is a connective tissue disease caused by mutations in the FBN1 gene, leading to alterations in the extracellular matrix microfibril assembly and the early formation of thoracic aorta aneurysms (TAAs). Non-genetic TAAs share many clinico-pathological aspects with MFS and deregulation of some microRNAs (miRNAs) has been demonstrated to be involved in the progression of TAA. In this study, 40 patients undergoing elective ascending aorta surgery were enrolled to compare TAA histomorphological features, miRNA profile and related target genes in order to find specific alterations that may explain the earlier and more severe clinical outcomes in MFS patients. Histomorphological, ultrastructural and in vitro studies were performed in order to compare aortic wall features of MFS and non-MFS TAA. MFS displayed greater glycosaminoglycan accumulation and loss/fragmentation of elastic fibers compared to non-MFS TAA. Immunohistochemistry revealed increased CD133+ angiogenic remodeling, greater MMP-2 expression, inflammation and smooth muscle cell (SMC) turnover in MFS TAA. Cultured SMCs from MFS confirmed higher turnover and α-smooth muscle actin expression compared with non-MFS TAA. Moreover, twenty-five miRNAs, including miR-26a, miR-29, miR-143 and miR-145, were found to be downregulated and only miR-632 was upregulated in MFS TAA in vivo. Bioinformatics analysis revealed that some deregulated miRNAs in MFS TAA are implicated in cell proliferation, extracellular matrix structure/function and TGFß signaling. Finally, gene analysis showed 28 upregulated and seven downregulated genes in MFS TAA, some of them belonging to the CDH1/APC and CCNA2/TP53 signaling pathways. Specific miRNA and gene deregulation characterized the aortopathy of MFS and this was associated with increased angiogenic remodeling, likely favoring the early and more severe clinical outcomes, compared to non-MFS TAA. Our findings provide new insights concerning the pathogenetic mechanisms of MFS TAA; further investigation is needed to confirm if these newly identified specific deregulated miRNAs may represent potential therapeutic targets to counteract the rapid progression of MFS aortopathy.


Assuntos
Aneurisma da Aorta Torácica , Regulação da Expressão Gênica , Síndrome de Marfan , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Neovascularização Patológica , Adolescente , Adulto , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Feminino , Humanos , Masculino , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patologia , MicroRNAs/biossíntese , MicroRNAs/genética , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Transdução de Sinais/genética
17.
J Thorac Dis ; 12(5): 2304-2316, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32642135

RESUMO

BACKGROUND: We sought to investigate and compare biomechanical properties and histomorphometric findings of thoracic ascending aorta aneurysm (TAA) tissue from patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV) in order to clarify mechanisms underlying differences in the clinical course. METHODS: Circumferential sections of TAA tissue in patients with BAV (BAV-TAA) and TAV (TAV-TAA) were obtained during surgery and used for biomechanical tests and histomorphometrical analysis. RESULTS: In BAV-TAA, we observed biomechanical higher peak stress and lower Young modulus values compared with TAV-TAA wall. The right lateral longitudinal region seemed to be the most fragile zone of the TAA wall. Mechanical stress-induced rupture of BAV-TAA tissue was sudden and uniform in all aortic wall layers, whereas a gradual and progressive aortic wall breakage was described in TAV-TAA. Histomorphometric analysis revealed higher amount of collagen but not elastin in BAV-TAA tunica media. CONCLUSIONS: The higher deformability of BAV-TAA tissue supports the hypothesis that increased wall shear stress doesn't explain the increased risk of sudden onset of rupture and dissection; other mechanisms, likely related to alteration of specific genetic pathways and epigenetic signals, could be investigated to explain differences in aortic dissection and rupture in BAV patients.

18.
J Clin Med ; 9(6)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630452

RESUMO

Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.

19.
Aging (Albany NY) ; 12(11): 10129-10146, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516132

RESUMO

Osteoarthritis (OA) is the most common joint disease characterized by destruction of articular cartilage. OA-induced cartilage degeneration causes inflammation, oxidative stress and the hypertrophic shift of quiescent chondrocytes. Clusterin (CLU) is a ubiquitous glycoprotein implicated in many cellular processes and its upregulation has been recently reported in OA cartilage. However, the specific role of CLU in OA cartilage injury has not been investigated yet. We analyzed CLU expression in human articular cartilage in vivo and in cartilage-derived chondrocytes in vitro. CLU knockdown in OA chondrocytes was also performed and its effect on proliferation, hypertrophic phenotype, apoptosis, inflammation and oxidative stress was investigated. CLU expression was upregulated in human OA cartilage and in cultured OA cartilage-derived chondrocytes compared with control group. CLU knockdown reduced cell proliferation and increased hypertrophic phenotype as well as apoptotic death. CLU-silenced OA chondrocytes showed higher MMP13 and COL10A1 as well as greater TNF-α, Nox4 and ROS levels. Our results indicate a possible cytoprotective role of CLU in OA chondrocytes promoting cell survival by its anti-apoptotic, anti-inflammatory and antioxidant properties and counteracting the hypertrophic phenotypic shift. Further studies are needed to deepen the role of CLU in order to identify a new potential therapeutic target for OA.


Assuntos
Cartilagem Articular/patologia , Clusterina/metabolismo , Osteoartrite do Quadril/patologia , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Cartilagem Articular/citologia , Cartilagem Articular/imunologia , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Condrócitos , Clusterina/genética , Feminino , Cabeça do Fêmur/patologia , Cabeça do Fêmur/cirurgia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/imunologia , Osteoartrite do Quadril/cirurgia , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo
20.
Antioxidants (Basel) ; 9(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316601

RESUMO

With the increase in average life expectancy, several individuals are affected by age-associated non-communicable chronic diseases (NCDs). The presence of NCDs, such as type 2 diabetes mellitus (T2DM), leads to the reduction in skeletal muscle mass, a pathological condition defined as sarcopenia. A key factor linking sarcopenia with cellular senescence and diabetes mellitus (DM) is oxidative stress. We previously reported as the absence of Peroxiredoxin 6 (Prdx6), an antioxidant enzyme implicated in maintaining intracellular redox homeostasis, induces an early-stage of T2DM. In the present study we sought to understand the role of Prdx6 in the crosstalk between aging and diabetic sarcopenia, by using Prdx6 knockout (Prdx6-/-) mice. Absence of Prdx6 reduced telomeres length and Sirtuin1 (SIRT1) nuclear localization. An increase in Sa-ß-Gal activity and p53-p21 pro-aging pathway were also evident. An impairment in IGF-1 (Insulin-like Groth Factor-1)/Akt-1/mTOR pathway leading to a relative increase in Forkhead Box O1 (FOXO1) nuclear localization and in a decrease of muscle differentiation as per lower levels of myoblast determination protein 1 (MyoD) was observed. Muscle atrophy was also present in Prdx6-/- mice by the increase in Muscle RING finger 1 (MuRF1) levels and proteins ubiquitination associated to a reduction in muscle strength. The present study, innovatively, highlights a fundamental role of Prdx6, in the crosstalk between aging, sarcopenia, and DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...